

 miTLS

 Publications

 Attacks

 Code

 FlexTLS

 People

 Alert

 3SHAKE

 VHC

 SMACK

 Logjam

 SLOTH

 Protocol

 Cryptographic

 Implementation

 Deployment

A Zoo of TLS attacks

Attacks on TLS that break the intuitive security property of a virtual
recreation of a physically secure channel can be categorized along three
dimensions.

	Protocol logic vs. cryptographic design flaw
	Specification/Standard vs. Implementation errors
	TLS vs. Context

Flaws in the protocol logic

Attacks targeting the protocol logic may for instance cause the client and
server to negotiate the use of weak algorithms even though they both support
strong cryptography.

If the faulty negotiation logic conforms to the specification, then the
attack is on the specification itself (as, e.g., partially enabled by the
False Start modification), if an implementation deviates
from the specification to implement a faulty negotiation logic [Dimcev, Langley] it is an attack on the implementation. As many aspects
of the standard can be underspecified or ambiguous, it is not always possible
to distinguish between these two cases.

Another class of protocol logic flaws are state-machine bugs [Early CCS Attack, SMACK Attack].

The attack can also be either an attack on TLS proper, or on its context,
e.g. if the attacker can just change the configuration files to deactivate
strong cryptography. As the TLS standard does not describe APIs or
configuration file formats, context specific attacks are always implementation
specific.

The renegotiation attack [TLS_Reneg_Attack] is a logical attack on the TLS standard, where
one peer believes it is running the first handshake on a connection, while the
other peer is running a re-handshake. miTLS prevents the renegotiation attack
by
implementing the renegotiation extension.

More generally, the TLS specification is vague about how applications
should handle data coming from consecutive sessions, e.g. whether it is safe
to join them and consider them as a single stream, or if the user should be
notified of the change of context. The renegotiation extension partially fixes
the problem, but it still leaves room for our alert attack, where the attacker
can turn any authentic fatal alert into a warning alert, which gets ignored by
default.

Much more seriously, resuming the attacker controlled session on a
different connection re-enables the renegotiation attack. This attack is known
as the triple
handshake attack and is an instance of a larger class of attacks resulting
from inadequate channel binding in compound authentication protocols. The
miTLS security theorem does not promise channel binding across different
connections and is thus not violated by the attack. To be secure, applications
making use of miTLS have, however, to be carefully designed to make use of the
provided security cues. We give a basic HTTPS client, miHTTPS, as an example
for such an application. Subsequently the flaw is also being patched at the
TLS level using a new extension.

Cryptographic design flaws

Attacks exploiting cryptographic design flaws may simply result from
cryptanalytic progress against the cryptographic building blocks of TLS. They
can, however, also result from improper non-blackbox use of otherwise secure
cryptographic constructions. An example for this is chosen ciphertext chaining
(CBC) mode encryption. Early versions of TLS allow using knowledge of the next
initialization vector (IV) to set up adaptive plaintext attacks, see, e.g.
OpenSSL archive for a first mention of the 'BEAST
attack'. The vulnerability is still present in the code, as we implement the
standard faithfully. See how in Enc we support a stale IV (
encrypt,
encrypt). The attack can be prevented by sending empty fragments. As this
example shows, the distinction between protocol logic and cryptographic flaws
is ambiguous as protocol logic can enable, as when giving the attacker access
to the IV of future encryptions, or prevent cryptographic attacks, as in the
empty fragment counter measure.

Similarly, padding-oracle attacks, use a combination of protocol logic and
cryptography, taking advantage of error messages to gain information on
encrypted data [Vaudenay02, CanvelHVV03]. Vaudenay's attack relies on the attacker
being able to distinguish bad_record_mac and
decryption_failed errors.
We implement standard mitigation for padding oracles.

POODLE is a padding oracle
attack that targets CBC-mode ciphers in SSLv3. It is due to SSLv3 not specifying the contents of the padding

Padding-oracle attack and similar attacks, through which the attacker can
obtain a (partial) decryption oracle, can often be traced back to logical or
cryptographic mistakes in the standard. Once the standard describes a
countermeasure, which might however be hard to implement, e.g. identical
timing for success and error branches, the onus is shifted to implementations.
One example for this is the [Bleichenbacher] attack, for which the countermeasure prescribed
by the standard is to use a freshly sampled random pre-master secret if
pre-master secret decryption fails. A variant of the Bleichenbacher attack is
the [KlimaPR] attack. Here is code for
testing whether a TLS implementation is susceptible to the Bleichenbacher or
KlimaPR attack. Our code is not, as we implement the recommended counter
measure of continuing with a random key in case of a decryption error. See the

real_decrypt function in the RSA module.

As demonstrated by [JSS2015] such weaknesses in RSA transport can still affect modern
ciphersuites relying on RSA signatures. Lesson, use different certificates.

Implementation flaws

More typical implementation attacks are buffer overflows [OpenSSL
vulnerabilities] resulting from programming errors, or timing-based side
channel attacks against cryptographic primitives [BrumleyB]. The former are largely prevented as we use a save
language. The latter are outside our model, and we rely on the proper
implementation of core cryptographic algorithms by the Bouncy Castle library
that we rely on.

Configuration flaws, infrastructure flaws

Further attacks arise from the usage or configuration of TLS, rather than
the protocol itself, for instance exploiting poor certificate management or
gaps between TLS and the application logic [Lawall10,
Most dangerous code].

Example attacks prevented in miTLS

SSL 2.0 version rollback [1996]

SSL 2 is
outlawed: miTLS does not support SSL 2.

Padding oracle attack by Vaudenay [2002]

Vaudenay's attack relies on the attacker being able to
distinguish bad_record_mac and decryption_failed
errors. We implement standard mitigation for padding oracles.

Renegotiation attack by Ray [2009]

We prevent the renegotiation attack by implementing the renegotiation
extension. See the Extensions
module and how the
Handshake module checks for the extension.

Alert attack [2012]

We prevent the alert attack by
resetting all buffers on epoch change (that is when we
send or receive the CCS message).

Compression-based attacks [2012]

In ProvPriv 2012, and the CRIME attack, TLS-level compression is used to break
confidentiality. miTLS does not support TLS-level compression, and provides a
length-hiding API to let the application conceal the real plaintext length
into a chosen range of possible lengths.

Timing attacks [2013]

The recent Lucky13Attack demonstrates that input-output IND-CPA security is
not sufficient to prevent all practical attacks. While we do not formally
model time we plan to implement countermeasures both by carefully avoiding
timing channels in the implementation and by an extension discussed in
paper and
RFC draft.

Attacks on RC4 [2013]

The recent attack
on RC4 is possible because RC4 is not IND-CPA secure, thus it would be
unreasonable to
assert its security.

Triple handshake attack [2014]

The triple
handshake attack and is an instance of a larger class of attacks resulting
from inadequate channel binding in compound authentication protocols.

State-machine attacks [2015]

Early CCS Attack and SMACK Attack are prevented as the type-based proof for
miTLS guarantees that its state machine conforms to its logical
specification.

Logjam [2015]

miTLS does not support any export ciphersuites, and clients prevent
Logjam-like attacks by enforcing a minimum strength on Diffie-Hellman groups
proposed by servers. Specifically, miTLS comes with a configurable,
pre-populated database of whitelisted known groups. When receiving an unknown
group from a server, clients perform additional checks. By default, no group
with a modulus of less than 1024 bytes is accepted. In addition, miTLS
implements a TLS extension proposed in a recent Internet Draft which allows to negotiate one of a number of
strong groups.

